Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
BMJ Open ; 13(1): e066626, 2023 01 12.
Article in English | MEDLINE | ID: covidwho-2193797

ABSTRACT

OBJECTIVES: To reliably quantify the radiographic severity of COVID-19 pneumonia with the Radiographic Assessment of Lung Edema (RALE) score on clinical chest X-rays among inpatients and examine the prognostic value of baseline RALE scores on COVID-19 clinical outcomes. SETTING: Hospitalised patients with COVID-19 in dedicated wards and intensive care units from two different hospital systems. PARTICIPANTS: 425 patients with COVID-19 in a discovery data set and 415 patients in a validation data set. PRIMARY AND SECONDARY OUTCOMES: We measured inter-rater reliability for RALE score annotations by different reviewers and examined for associations of consensus RALE scores with the level of respiratory support, demographics, physiologic variables, applied therapies, plasma host-response biomarkers, SARS-CoV-2 RNA load and clinical outcomes. RESULTS: Inter-rater agreement for RALE scores improved from fair to excellent following reviewer training and feedback (intraclass correlation coefficient of 0.85 vs 0.93, respectively). In the discovery cohort, the required level of respiratory support at the time of CXR acquisition (supplemental oxygen or non-invasive ventilation (n=178); invasive-mechanical ventilation (n=234), extracorporeal membrane oxygenation (n=13)) was significantly associated with RALE scores (median (IQR): 20.0 (14.1-26.7), 26.0 (20.5-34.0) and 44.5 (34.5-48.0), respectively, p<0.0001). Among invasively ventilated patients, RALE scores were significantly associated with worse respiratory mechanics (plateau and driving pressure) and gas exchange metrics (PaO2/FiO2 and ventilatory ratio), as well as higher plasma levels of IL-6, soluble receptor of advanced glycation end-products and soluble tumour necrosis factor receptor 1 (p<0.05). RALE scores were independently associated with 90-day survival in a multivariate Cox proportional hazards model (adjusted HR 1.04 (1.02-1.07), p=0.002). We replicated the significant associations of RALE scores with baseline disease severity and mortality in the independent validation data set. CONCLUSIONS: With a reproducible method to measure radiographic severity in COVID-19, we found significant associations with clinical and physiologic severity, host inflammation and clinical outcomes. The incorporation of radiographic severity assessments in clinical decision-making may provide important guidance for prognostication and treatment allocation in COVID-19.


Subject(s)
COVID-19 , Pulmonary Edema , Humans , COVID-19/diagnostic imaging , Prognosis , SARS-CoV-2 , Inpatients , Reproducibility of Results , RNA, Viral , Respiratory Sounds , Pulmonary Edema/diagnostic imaging , Cohort Studies , Lung/diagnostic imaging , Edema , Respiration, Artificial
2.
Ann Am Thorac Soc ; 18(7): 1202-1210, 2021 07.
Article in English | MEDLINE | ID: covidwho-1305584

ABSTRACT

Rationale: There is an urgent need for improved understanding of the mechanisms and clinical characteristics of acute respiratory distress syndrome (ARDS) due to coronavirus disease (COVID-19).Objectives: To compare key demographic and physiologic parameters, biomarkers, and clinical outcomes of COVID-19 ARDS and ARDS secondary to direct lung injury from other etiologies of pneumonia.Methods: We enrolled 27 patients with COVID-19 ARDS in a prospective, observational cohort study and compared them with a historical, pre-COVID-19 cohort of patients with viral ARDS (n = 14), bacterial ARDS (n = 21), and ARDS due to culture-negative pneumonia (n = 30). We recorded clinical demographics; measured respiratory mechanical parameters; collected serial peripheral blood specimens for measurement of plasma interleukin (IL)-6, IL-8, and IL-10; and followed patients prospectively for patient-centered outcomes. We conducted between-group comparisons with nonparametric tests and analyzed time-to-event outcomes with Kaplan-Meier and Cox proportional hazards models.Results: Patients with COVID-19 ARDS had higher body mass index and were more likely to be Black, or residents of skilled nursing facilities, compared with those with non-COVID-19 ARDS (P < 0.05). Patients with COVID-19 had lower delivered minute ventilation compared with bacterial and culture-negative ARDS (post hoc P < 0.01) but not compared with viral ARDS. We found no differences in static compliance, hypoxemic indices, or carbon dioxide clearance between groups. Patients with COVID-19 had lower IL-6 levels compared with bacterial and culture-negative ARDS at early time points after intubation but no differences in IL-6 levels compared with viral ARDS. Patients with COVID-19 had longer duration of mechanical ventilation but similar 60-day mortality in both unadjusted and adjusted analyses.Conclusions: COVID-19 ARDS bears several similarities to viral ARDS but demonstrates lower minute ventilation and lower systemic levels of IL-6 compared with bacterial and culture-negative ARDS. COVID-19 ARDS was associated with longer dependence on mechanical ventilation compared with non-COVID-19 ARDS. Such detectable differences of COVID-19 do not merit deviation from evidence-based management of ARDS but suggest priorities for clinical research to better characterize and treat this new clinical entity.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Biomarkers , Demography , Humans , Prospective Studies , Respiration, Artificial , Respiratory Distress Syndrome/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL